| Obiettivi |
OBIETTIVI FORMATIVI Il corso di Data Analytics mira fornire gli strumenti per l’analisi avanzata di grandi moli di dati con tecniche basate sull’Intelligenza Artificiale ed, in particolare, sul Machine Learning. In particolare, il corso mira ad illustrare i principi e le tecniche alla base dell’analisi dei dati grezzi, condotta con l’obiettivo di trarre conclusioni per il consumo umano su tali informazioni, applicando processi di analisi automatizzati.
Conoscenze e capacità di comprensione: Conoscenza dei concetti e delle nozioni fondamentali della Data Analytics e delle principali metodologie e tecniche di estrazione, manipolazione ed analisi dei dati basate sull’Intelligenza Artificiale.
Autonomia di giudizio: Sviluppo di autonomia di giudizio e capacità di valutazione tra diverse metodologie e tecniche per l’estrazione e l’analisi dei dati.
Abilità comunicative: Capacità di comunicare con adeguata competenza tecnica e con linguaggio appropriato, illustrando le motivazioni teoriche e tecniche che sono alla base delle scelte fondamentali di progettazione di un sistema di estrazione ed analisi dei dati.
Capacità di apprendimento: Capacità di apprendimento di nuove tecnologie e strumenti che derivano dal costante avanzamento delle tecniche di Intelligenza Artificiale, con particolare focus sull’analisi dei dati.
MODALITA' DI ACCERTAMENTO E VALUTAZIONE Gli esami di accertamento e di valutazione consistono in: - un progetto di analisi dei dati con lo scopo di analizzare con una o più tecniche un dataset e che consiste nello scegliere un dataset dal web (si suggerisce di prelevarlo da kaggle), proporre un modello di machine learning e commentarlo, eventualmente confrontando tra loro diverse soluzioni, - un esercizio di web scraping, opzionale, da realizzarsi con Selenium WebDriver o con qualsiasi altro strumento di scraping, che ha lo scopo di approfondire lo specifico problema di recuperare dati dal web, - una prova orale, la cui durata media è di 40 minuti, volta a discutere il progetto e l’eventuale esercizio realizzato, verificandone la qualità del modello proposto, l'attinenza con il dataset scelto e la bontà dei commenti personali, sia sul modello che sull’eventuale esercizio di web scraping. Inoltre la prova orale mira ad accertare la comprensione degli argomenti teorici del corso. Si precisa che sia il progetto che l’eventuale esercizio di web scraping devono essere consegnati una settimana prima dell’appello, in modo da dare il tempo ai docenti di valutare attentamente l’elaborato. Al termine della prova orale, allo studente viene attribuito un voto massimo 30/30.
Il voto finale sarà attribuito secondo il seguente criterio di valutazione: 30 e lode: conoscenza completa, approfondita e critica degli argomenti, eccellente proprietà di linguaggio, completa ed originale capacità interpretativa, piena capacità di applicare autonomamente le conoscenze per risolvere i problemi proposti; 28 - 30: conoscenza completa e approfondita degli argomenti, ottima proprietà di linguaggio, completa ed efficace capacità interpretativa, in grado di applicare autonomamente le conoscenze per risolvere i problemi proposti; 24 - 27: conoscenza degli argomenti con un buon grado di padronanza, buona proprietà di linguaggio, corretta e sicura capacità interpretativa, buona capacità di applicare in modo corretto la maggior parte delle conoscenze per risolvere i problemi proposti; 20 - 23: conoscenza adeguata degli argomenti ma limitata padronanza degli stessi, soddisfacente proprietà di linguaggio, corretta capacità interpretativa, più che sufficiente capacità di applicare autonomamente le conoscenze per risolvere i problemi proposti; 18 - 19: conoscenza di base degli argomenti principali, conoscenza di base del linguaggio tecnico, sufficiente capacità interpretativa, sufficiente capacità di applicare le conoscenze di base acquisite; Insufficiente: non possiede una conoscenza accettabile degli argomenti trattati durante il corso. |