
 

 

CAPITOLO VI 

 

 

CONDIZIONI DI FUNZIONAMENTO ANORMALI:  

IL CORTO CIRCUITO 

 

 

 

 Generalità 

 

Vengono prese in esame le condizioni di funzionamento anormali conseguenti al 

verificarsi di un corto circuito in un punto del sistema; si esamina il caso più generale di 

sistema con trasmissione su rete, potendosi considerare il corto circuito in un punto del 

sistema con trasmissione su linea un caso particolare del precedente. 

Il sistema con trasmissione su rete è un sistema comunque complesso, che si 

suppone simmetrico nelle impedenze o reso tale attraverso la trasposizione; si suppone, 

inoltre, di partire da condizioni di funzionamento a vuoto (corrispondente alla 

condizione di tensioni nodali massime per assenza di cadute di tensione sulla rete). 

 Oltre il corto circuito trifase, che è simmetrico, vengono considerati anche i 

seguenti corto circuiti dissimmetrici: monofase a terra e tra due fasi. 

 Per semplicità, considereremo: 

 solo cortocircuiti che si manifestano in corrispondenza dei nodi del sistema e 

lontano dai nodi di generazione;  

 solo il calcolo della corrente di cortocircuito nel nodo di guasto, e non anche le 

conseguenti correnti e tensioni negli altri lati e nodi del sistema; 

 solo il calcolo della componente simmetrica e sinusoidale di regime della 

corrente di guasto e non anche la componente “transitoria”.  

 Viene innanzitutto richiamata la rappresentazione dei componenti del sistema in 

condizioni di guasto mediante i relativi circuiti equivalenti monofase di sequenza diretta 

(positiva), inversa (negativa) ed omopolare (zero). 

 

2. Rappresentazione dei componenti 

 

 Vengono considerati i circuiti equivalenti monofase di sequenza diretta, di 

sequenza inversa e di sequenza omopolare dei componenti (linea, trasformatore e 

generatore) del sistema, validi per le condizioni di corto circuito. 

 

2.1 Linee 

 

a) Circuiti equivalenti monofase di sequenza diretta e di sequenza inversa 

 

 Il circuito equivalente monofase di sequenza diretta e il circuito equivalente di 

sequenza inversa di una linea coincidono ed entrambi sono assimilabili a quello della 

fig.VI.1. 
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Fig.VI.1 - Circuito equivalente monofase di sequenza diretta ed inversa di una linea, in 

condizioni di corto circuito. 

 

 Si noti che, in condizioni di corto circuito è sempre trascurabile il contributo alle 

correnti di guasto dei parametri trasversali (conduttanza e capacità di servizio). 

 

b) Circuito equivalente monofase di sequenza omopolare 

 

 Il circuito equivalente di sequenza omopolare di una linea è quello della fig.VI.2, 

in cui i parametri serie sono la resistenza e l'induttanza omopolari ed in cui il parametro 

derivato viene trascurata. 
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Fig. VI.2 - Circuito equivalente di sequenza omopolare di una linea 

 

 Valori orientativi per i parametri unitari delle figg.VI.1 ed VI.2 sono riportati 

nella tab. VI.1 per vari tipi di conduttore. 

 

Tab. VI.I – Valori numerici dei parametri unitari delle linee 

Tipo di conduttore )km/mH(ll
1

 

r kml
1( / )  l mHkml

0( / ) r kml
0( / )  

Conduttore singolo 1.3 0.029 4.5 0.100 

Conduttore binato 1 0.028 3.5 0.098 

Conduttore trinato 0.8 0.019 3 0.071 

 

 

2.2 Trasformatore trifase a due avvolgimenti 

 

 

a) Circuiti equivalenti monofase di sequenza diretta e di sequenza inversa 

 

 Si rimanda a tutto quanto detto per la rappresentazione del suddetto componente 

in regime permanente (il parametro trasversale è a maggior ragione trascurabile). 

 

 

 



 

 

 

b) Circuito equivalente monofase di sequenza omopolare 

 

 Il circuito equivalente di sequenza omopolare varia con il tipo di collegamento 

degli avvolgimenti e con il tipo di circuito magnetico (a flussi liberi o a flussi vincolati). 

Di seguito vengono riassunti i casi più salinenti. 
 

 Collegamento a stella di entrambi gli avvolgimenti  

 

 Nel caso di collegamento di un solo centro stella a terra (fig.VI.3), le correnti 

omopolari che eventualmente circolano nel primario non possono provocare al 

secondario alcuna amperspira d'opposizione (al secondario, con il centro stella isolato 

da terra, le correnti omopolari non possono circolare); è per questo che il valore della 

reattanza omopolare dipende dal tipo di circuito magnetico. Se il trasformatore è a flussi 

liberi (nucleo a cinque colonne) il flusso omopolare si chiude nel ferro e la reattanza ha 

un valore coincidente con quello della reattanza a vuoto, cioè 
t
V

t
0 XX  . Per il calcolo 

della 
t
VX  basta considerare il valore della corrente a vuoto %i0  riportato sulla targa del 

trasformatore, in quanto con buona approssimazione si può scrivere 
t
Vo X%)i/100( 

. 

Nel caso (più frequente) di circuito magnetico a flussi vincolati (nucleo a tre colonne) il 

flusso omopolare si chiude principalmente nell'aria e solo parzialmente attraverso le 

parti metalliche vicine, per cui non è possibile stabilire delle regole per un calcolo 

preciso della reattanza omopolare, che dipende troppo dal modo di costruzione. 

In entrambi i casi, la corrente omopolare non riesce ad andare oltre il secondario del 

trasformatore, per cui il circuito equivalente di sequenza omopolare del trasformatore in 

esame è quello della fig.VI.3. 

 

 

 
 

 
 

Fig.VI.3 – Circuito equivalente di sequenza omopolare di un trasformatore a due avvolgimenti 

con collegamento stella-stella con un solo centro stella a terra. 
 

Nel caso di entrambi i centri stella a terra (fig.VI.4), le correnti omopolari che 

eventualmente circolano in un avvolgimento provocano nell’altro avvolgimento la 

circolazione di correnti omopolari, per cui la reattanza è uguale a quella di dispersione, 

cioè: 
t
1

t
0 XX  .              (VI.1) 

 



 

 

Le correnti omopolari possono passare oltre il trasformatore, per cui il circuito 

equivalente di sequenza omopolare è quello della fig.VI.4. 

 

 
Fig.VI.4 – Circuito equivalente di sequenza omopolare di un trasformatore a due avvolgimenti 

con collegamento stella-stella con entrambi i centri stella a terra. 
  

 Collegamento triangolo-stella con centro stella a terra (fig.VI.5) 

 

 Le correnti omopolari che eventualmente circolano nell'avvolgimento a stella 

con il centro stella a terra provocano nel triangolo la circolazione di correnti omopolari, 

potendosi chiudere le correnti stesse nell'interno dell'avvolgimento. Anche in questo 

caso la reattanza omopolare è quindi uguale a quella di dispersione, cioè: 

 
t
1

t
0 XX                                               (VI.2) 

 

 Tuttavia, la corrente omopolare non può uscire dall'avvolgimento a triangolo per 

andare oltre il trasformatore, per cui il circuito equivalente di sequenza omopolare è 

quello della fig.VI.5.  

 

 
Fig.VI.5 – Circuito equivalente di sequenza omopolare di un trasformatore a due 

avvolgimenti con collegamento triangolo-stella con centro stella a terra. 

 

  

Si fa osservare che gli accoppiamenti stella-stella senza centro stella a terra, 

triangolo-triangolo, triangolo-stella senza centro stella a terra non si prendono in 

considerazione, perché a priori si può dire che la reattanza è infinita, non essendoci 

possibilità di circolazione delle correnti omopolari ed il circuito equivalente monofase 

di sequenza omopolare del trasformatore corrisponde ad un circuito aperto (interrotto). 

 

2.3 Generatori 

 

a) Circuiti equivalenti monofase di sequenza diretta 



 

 

 Il circuito equivalente monofase dei generatori corrisponde ad un generatore 

ideale di tensione pari alla sua tensione nominale di fase, posto tra il nodo in cui è 

inserito il generatore ed il neutro. 

 

a) Circuiti equivalenti monofase di sequenza inversa ed omopolare 

 

 Si trascurano i valori delle impedenze equivalenti di sequenza inversa ed 

omopolare del generatore ed il suo circuito equivalente monofase corrisponde ad un 

cortocircuito tra il nodo in cui è inserito il generatore ed il neutro. 

 

 

3. Calcolo semplificato del cortocircuito trifase (simmetrico) 
 

 Innanzitutto, trattandosi di cortocircuito simmetrico, è possibile affrontare tale 

studio facendo riferimento solo al circuito monofase equivalente di sola sequenza diretta 

del sistema, che può ottenersi a partire dai circuiti equivalenti monofase di sequenza 

diretta dei suoi componenti (generatori, trasformatori e linee). 

 In secondo luogo, essendo interessati solo al calcolo della corrente di 

cortocircuito nel nodo di guasto (e non anche quelle negli altri nodi e lati del sistema), 

sarà usato un metodo semplificato che prevede, in virtù della linearità del sistema, 

l'applicazione del principio di sovrapposizione degli effetti. 

 Si consideri il circuito equivalente monofase di sequenza diretta di un sistema 

comunque complesso con in evidenza solo il nodo di guasto (k, N), come in figura VI.6. 
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Fig.VI.6 – Circuito equivalente monofase di sequenza diretta di un sistema comunque 

complesso, in presenza di un cortocircuito nel nodo (k, N) 

 

E' evidente che, al fine di calcolare la corrente di cortocircuito nel punto di guasto (k,N), 

è sempre possibile sostituire il guasto stesso in vario modo, senza alterare le condizioni 

di funzionamento elettrico del sistema; in pratica, come evidenziato nelle figure VI.7 a), 

b) e c), il guasto può essere sostituito con una delle seguenti condizioni equivalenti: 

 una impedenza pari alla impedenza Zcc del cortocircuito (incognita); 

 un generatore ideale di corrente iniettata nel nodo, di valore (Icc) pari (ma di 

segno opposto) alla corrente di cortocircuito (incognita); 

 un generatore ideale di tensione posto tra k ed N, di valore (Vcc) pari alla 

tensione nel nodo soggetto al cortocircuito (incognita) 
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Fig.VI.7 – Rappresentazione alternativa del circuito equivalente monofase di sequenza 

diretta di un sistema, in presenza di un cortocircuito nel nodo (k, N) 

 

 Per meglio comprendere il valore delle sostituzioni di consideri il caso 

particolare di cortocircuito mediante impedenza di cortocircuito nulla (cortocircuito 

“franco” con Zcc = 0). In questo caso è, ovviamente anche Vcc = 0 mentre Icc è diversa 

da zero ed incognita. Se anziché la rete reale di figura VI.6 si considera la situazione 

equivalente di figura VI.7b), la Icc incognita può essere calcolata applicando il principio 

di sovrapposizione degli effetti. Infatti, la tensione nel nodo (k, N) del sistema guasto 

può essere calcolata come dovuta a due contributi: 

1. la VkN' (tensione prima del guasto) senza il generatore di corrente Icc; 

2. la VkN'' con il solo generatore di corrente Icc e con tutti i generatori di tensione 

interni alla di rete posti pari a zero. 

La VkN' (tensione di pre-guasto, Vpg) può essere determinata o con l'analisi a regime 

permanente mediante le equazioni di rete di cui al capitolo precedente o, in modo ancor 

più semplificato (ed a favore della stima di una corrente di cortocircuito maggiore di 



 

 

quella reale), imponendola pari al valore massimo delle tensioni nodali del sistema nelle 

condizioni di funzionamento a vuoto, usualmente pari ad un +10% della tensione 

nominale, cioè: 

VkN' = Vpg = 1.1 En 

 

La VkN'' (contributo dovuto alla sola -Icc) evidentemente è pari a: 

 

VkN'' = -Icc · ZkNeq 

 

dove ZkNeq è l'impedenza equivalente alla Thevenin della rete vista dal nodo di guasto 

(k, N), facilmente calcolabile a partire dalla matrice delle impedenze nodali del sistema, 

[Z], di cui al capitolo precedente. 

 

In altri termini si ha: 

 

Vcc = 0 = VkN' + VkN'' = Vpg  - Icc · ZkNeq  

 

da cui si ricava: 

Icc = Vpg / ZkNeq = 1.1 · En/ ZkNeq  

 

 

4. Calcolo semplificato dei cortocircuiti dissimmetrici 

 

 Per brevità, sono considerati solo i cortocircuiti “franchi” (mediante impedenze 

di guasto nulle) a) tra una sola fase e la terra (guasto monofase) e b) tra due sole fasi 

(guasto bifase), entrambi dissimmetrici. 

 Il metodo di principio semplificato adottato per il calcolo delle correnti di 

cortocircuito dissimmetrici è praticamente coincidente con quello usato per lo studio del 

cortocircuito trifase che, però, deve essere meglio particolarizzato, per tener conto delle 

dissimmetrie introdotte dai guasti in questione e che dipendono dal tipo di guasto. Il 

punto di partenza è, perciò, la rappresentazione semplificata ma trifase del sistema 

(figura VI.8) in cui è nuovamente evidenziato il nodo (trifase) di guasto. 
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Fig.VI.8 – Schema semplificato di un sistema trifase comunque complesso, con 

possibile cortocircuito dissimmetrico nel nodo k, rappresentato mediante opportuno 

sistema di impedenze 



 

 

 Come nel caso del guasto trifase, qualunque sia il cortocircuito dissimmetrico 

esso può essere sempre sostituito con opportune impedenze poste nel nodo di guasto, tra 

le fasi e tra esse e la terra. Allo stesso modo, come evidenziato nella figura VI.9, il 

cortocircuito dissimmetrico può essere sostituito con tre generatori “dissimmetrici” di 

tensione. 
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Fig.VI.9 – Schema semplificato di un sistema trifase comunque complesso, con 

possibile cortocircuito dissimmetrico nel nodo k, rappresentato mediante un opportuno 

sistema di generatori di tensione dissimmetrici 

 

Qualunque sia il tipo di cortocircuito dissimmetrico, la terna “dissimmetrica” di 

tensione che lo rappresenta può essere decomposta in tre terne di tensioni di sequenza 

(diretta, inversa ed omopolare) che, come indicato nella figura VI.10, devono essere 

poste in serie (in modo che si sommino) per risultare equivalenti alla terna 

dissimmetrica di partenza. 
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Fig.VI.10 – Schema semplificato di un sistema trifase comunque complesso, con 

possibile cortocircuito dissimmetrico nel nodo k, rappresentato mediante una terna di 

tensioni dissimmetriche, decomposte nelle tre terne di tensioni di sequenza in serie. 

 

 Conseguentemente, il sistema di figura VI.10 può essere studiato, separatamente, 

a ciascuna sequenza, mediante il relativo circuito equivalente monofase (figura VI.11); 

successivamente, una volta calcolate (sui circuiti di figura VI.11) le componenti di 

sequenza della corrente di cortocircuito in esame, le stesse possono essere 

opportunamente combinate tra loro per calcolare la corrente di cortocircuito “di fase” 

nel sistema reale di partenza.   
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a) Circuito equivalente monofase di sequenza diretta 

 

 

k

N

Rete

V i

cc

k

N

V i

cc

Z i

kk

I i

cc

 
b) Circuito equivalente monofase di sequenza inversa 
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c) Circuito equivalente monofase di sequenza omopolare 

 

Fig.VI.11 – Circuiti equivalenti monofase di sequenza di un sistema trifase comunque 

complesso, con possibile cortocircuito dissimmetrico nel nodo k. 

 

 Scrivendo le equazioni di Kirchhoff sui circuiti di figura VI.11 a), b) e c) si 

ottengono facilmente le seguenti equazioni, anche note come equazioni generali del 

guasto (corto circuito), espresse in forma matriciale: 

 
 Vo

cc    0    Zo
kk 0 0    Io

cc      

 Vd
cc  =  Vpg  -  0 Zd

kk 0    Id
cc     (VI.3) 

 Vi
cc    0    0 0 Zi

kk    Ii
cc      

 

Nelle (VI.3) le tensioni al primo membro sono le componenti delle varie 

sequenze delle tensioni rispetto a terra che si presentano nel punto di guasto a corto 

circuito avvenuto; Vpg è invece la tensione nel nodo guasto (rispetto al neutro) in 

assenza del guasto, cioè la tensione di “preguasto”; Zd
kk è l'impedenza equivalente del 

sistema elettrico a monte del punto di guasto alla sequenza diretta, Zi
kk è l'impedenza 

equivalente del sistema elettrico a monte del punto di guasto alla sequenza inversa, Zo
kk 



 

 

è l'impedenza equivalente del sistema elettrico a monte del punto di guasto alla 

sequenza omopolare. 

Dall’analisi delle relazioni (VI.3) è evidente che, se si assumono noti i valori 

delle impedenze equivalenti del sistema elettrico alle sequenze diretta, inversa ed 

omopolare e della tensione di pre-guasto, esse costituiscono un sistema di tre equazioni 

vettoriali in sei incognite, anch’esse vettoriali: le componenti di sequenza delle correnti 

e delle tensioni nel punto di guasto. Se, allora, per ciascun tipo di corto circuito, si 

vogliono conoscere i valori di tali grandezze è necessario associare alle (VI.3) altre tre 

equazioni vettoriali indipendenti nelle stesse incognite; esse sono le equazioni 

“caratteristiche” del guasto. 

Prima di mostrare quali sono le tre equazioni vettoriali che è possibile associare, 

per ciascun tipo di corto circuito dissimmetrico, alle (VI.3) e come, a partire dal sistema 

di sei equazioni cui si perviene, è possibile calcolare le correnti e le tensioni nel punto di 

guasto, viene meglio specificato come è possibile calcolare in modo rapido i valori delle 

impedenze equivalenti del sistema elettrico a monte del punto di guasto alle sequenze 

diretta, inversa ed omopolare. In pratica, il calcolo delle impedenze equivalenti dinanzi 

definite si esegue o in modo diretto, nel caso di sistemi elettrici molto semplici, o 

attraverso un metodo matriciale basato sulla costruzione delle matrici delle impedenze 

nodali di corto circuito alle sequenze diretta, inversa e zero, nei casi più complessi. Il 

calcolo in modo diretto consiste nell’effettuare sui tre circuiti equivalenti del sistema 

elettrico a monte del punto di guasto tutte le operazioni di serie e parallelo delle 

impedenze presenti così da ricavare le impedenze equivalenti secondo Thevenin. Il 

metodo matriciale si basa invece sul fatto che l’auto-impedenza di un nodo della matrice 

delle impedenze nodali di corto circuito coincide con l'impedenza equivalente secondo 

Thevenin del sistema tra il nodo stesso e il riferimento; ciò vale tanto per la sequenza 

diretta che per le sequenze inversa ed omopolare. Le matrici delle impedenze nodali di 

corto circuito sono quelle che si ottengono, ad esempio, per inversione delle matrici 

delle ammettenze nodali di corto circuito, ricavate, a loro volta, per ispezione dei 

circuiti equivalenti del sistema elettrico a monte del nodo k 1. 
 

4.1 Corto circuito “franco” di una fase a terra (guasto monofase a terra) 

 

 E' il corto circuito dissimmetrico che più frequentemente si verifica negli 

impianti elettrici. Nella fig.VI.8, il corto circuito franco (o anche “netto”) della fase 1 

con la terra è rappresentato ponendo Zcc1= 0, Zcc2 = Zcc3 = ∞ e ZT = 0. 

Valgono perciò le seguenti relazioni: 

 

I1= Icc1 (incognita),  I2 = I3 = 0 e V1 = 0.              (VI.4) 

 

                                                           
1  Le matrici delle ammettenze nodali di corto circuito alle sequenze diretta, inversa e zero si 

costruiscono applicando le stesse regole impiegate per la costruzione della matrice delle ammettenze 

nodali introdotta negli studi di regime permanente. Si nota esplicitamente, però, che le due matrici alla 

sequenza diretta, pur essendo relative alla stessa sequenza, sono diverse tra loro in quanto ricavate da 

due circuiti equivalenti del sistema elettrico (quello valido per gli studi di corto circuito e quello 

valido per gli studi di regime permanente) in cui i singoli componenti sono rappresentati, quasi 

sempre, in modo differente. 



 

 

Essendo I2 = I3 = 0, dalle relazioni matriciali che legano tra loro le componenti di 

sequenza e le componenti di fase (dissimmetriche) si ottiene facilmente che: 

 

Io
cc = Id

cc = Ii
cc                                                            (VI.5) 

 

Similmente, essendo V1 = 0 dalle relazioni matriciali che legano tra loro le 

componenti di sequenza e le componenti di fase (dissimmetriche) si ottiene facilmente 

che: 

Vo
cc + Vd

cc + Vi
cc = 0                                         (VI.6) 

 

 Le tre relazioni indipendenti che si possono ricavare dalle (VI.5) e la (VI.6) 

rappresentano le tre equazioni vettoriali indipendenti, dette equazioni caratteristiche del 

corto circuito netto della fase 1 con la terra, che insieme alle (VI.3) permettono di 

ricavare le tensioni e le correnti nel punto di guasto nel caso di corto circuito monofase 

a terra. 

 Le sommando membro a membro le tre equazioni generali del corto che si 

possono ricavare dalle (VI.3) si ottiene: 

 

Vpg = 1.1 · En  = (Vo
cc + Vd

cc + Vi
cc) + (Zo

kkI
o
cc + Zd

kkI
d

cc + Zi
kkI

i
cc) 

 

 Tenendo presente la (VI.6) si ha: 

 

Vpg = 0 + (Zo
kkI

o
cc + Zd

kkI
d

cc + Zi
kkI

i
cc) 

 

ed ancora, tenendo conto delle (VI.5) si ha: 

 

Vpg = 0 + (Zo
kk + Zd

kk + Zi
kk)·I

d
cc  

 

da cui: 
 

Id
cc = Io

cc= Ii
cc = Vpg /(Z

o
kk + Zd

kk + Zi
kk) = 1.1 · En  /(Z

o
kk + Zd

kk + Zi
kk) 

 

 Noti quindi i componenti simmetrici delle tre correnti che fuoriescono dal punto 

di guasto, si possono finalmente calcolare la corrente di corto circuito monofase della 

fase 1: 

 

Icc1 = 3·Id
cc= 3·1.1 · En  /(Z

o
kk + Zd

kk + Zi
kk)                       (VI.7) 

 

 Alla stessa stregua si possono calcolare anche le tensioni,  Vcc2 e Vcc3, cioè le 

tensioni sulle “fasi sane” (non coinvolte direttamente dal guasto) che si presentano, a 

guasto avvenuto, tra il punto di guasto e la terra. Si ricordi infatti che: 

 

Vcc1  = (Vo
cc + Vd

cc + Vi
cc) = 0 

Vcc2  = (Vo
cc + Vd

cc + Vi
cc) 

Vcc3  = (Vo
cc + Vd

cc + Vi
cc) 

 



 

 

Vcc2 e Vcc3 possono perciò ritenersi note, essendo note le componenti di sequenza delle 

tensioni Vo
cc, Vd

cc, e Vi
cc che si calcolano facilmente dalle figure VI.11 a), b) e c) a 

partire dalla conoscenza delle componenti di sequenza delle correnti. 

E' interessante sottolineare che, nel caso in cui il sistema nella sezione di guasto si 

presenti con il neutro “isolato” da terra (impedenza verso terra infinita) la Zo
kk 

tenderebbe ad assumere valore infinito (soprattutto se sono trascurabili gli 

accoppiamenti capacitivi del sistema verso terra); allora, in caso di guasto netto verso 

terra si avrebbe che: 

a) la corrente di cortocircuito Icc1, tenderebbe ad assume valore nullo; 

b) le tensioni sulle fasi sane, Vcc2 e Vcc3 tenderebbero a portarsi al valore della tensione 

concatenata. 

In questo modo, un carico trifase alimentato dal nodo di guasto praticamente non si 

accorgerebbe del guasto e continuerebbe a “sentire” una alimentazione trifase con tre 

tensioni concatenate (come prima del guasto); inoltre la non pericolosità della corrente 

di cortocircuito (praticamente nulla) potrebbe consentire al sistema di funzionare anche 

in condizioni di guasto senza interruzione dell'alimentazione. Rimane ovvio, però, che 

ravvisata la presenza del guasto, si dovrà comunque intervenire in tempi brevi per 

rimuoverlo, magari dopo aver trovato altre soluzioni capaci di evitare l'interruzione del 

servizio elettrico ai carichi “essenziali” o “privilegiati” alimentati dal nodo di guasto.   
 

 Tornando al calcolo della corrente di cortocircuito è utile osservare che le VI.5 e 

VI.6 si possono interpretare nel senso che è come se le reti di sequenza fossero connesse 

in serie tra loro. Questa osservazione può risultare utile per calcolare le componenti di 

sequenza della corrente di cortocircuito in modo ancora più immediato di quanto fatto 

precedentemente. Collegando, infatti, “fittiziamente” le reti di sequenza in serie tra loro, 

come nella figura VI.12, si perviene immediatamente al calcolo della Id
cc e, quindi 

anche della  Icc1. 

 

 



 

 

Figura VI.12 

 Connessione “fittizia” delle reti di sequenza, per cortocircuito monofase netto 
 

 

 

 

 

4.2 Corto circuito “franco” fra due fasi (guasto bifase) 

 

 Nella fig. VI.7, il corto circuito netto tra le fasi 2 e 3 può essere rappresentato 

ponendo Zcc2 = Zcc3 = 0 e  ZT = ∞. 

 Allora, oltre alle VI.3, valgono senz'altro anche le seguenti relazioni particolari 

del guasto bifase netto: 

I1 = 0;  I2 = -I3;                                                   (VI.8) 

V2 = V3 .                                                       (VI.9) 

  

 Sempre considerando le relazioni matriciali che le legano tra loro le componenti 

di fase con quelle di sequenza (e viceversa), dalle VI.8 e 9 si ricava facilmente che: 

 

I1 = 0 =  Io
cc  + Id

cc  + Ii
cc →  Io

cc  = - (Id
cc  + Ii

cc) 

inoltre: 

(I2  + I3) = 0 = (Io
cc +Id

cc+Ii
cc ) + (Io

cc+Id
cc +Ii

cc) = 0 

da cui: 

2Io
cc + (+Id

cc + (+Ii
cc = -2(Id

cc  + Ii
cc) + (+Id

cc + (+Ii
cc = 0 

e ancora: 

(-2++Id
cc + (-2++Ii

cc = 0 
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ed infine: 

Id
cc = - Ii

cc  →  Io
cc = 0.                                                   (VI.10) 

 

 Dalle VI.9 si ricava invece che: 

 

(Vo
cc +Vd

cc+Vi
cc ) = (Vo

cc+Vd
cc +Vi

cc) 

da cui: 

(-Vd
cc = (-Vi

cc      →  Vd
cc = Vi

cc    .                                         (VI.11) 

 

 Dalle VI.10 e VI.11 è facile constatare che, fittiziamente, è come se le reti di 

sequenza diretta ed inversa fossero collegate in parallelo tra loro con, ulteriormente, la 

rete di sequenza omopolare isolata (o “staccata”) dalle altre due; in altri termini è come 

se valesse il circuito fittizio di cui alla figura VI.13  

 Da esso si ricava facilmente che: 

 

Id
cc = - Ii

cc = 1.1 · En  /(Z
d
kk + Zi

kk) . 

  

 Calcolate le componenti di sequenza delle correnti di cortocircuito, possiamo 

agevolmente calcolare le correnti di cortocircuito di fase: 

 

I1 = 0;  I2 = -I3 =  (Io
cc +Id

cc+Ii
cc ) = (-·1.1·En  /(Z

d
kk + Zi

kk) 

 

ed essendo: 

(- = -j√3 

 

I2 = -I3 =   -j√3·1.1·En  /(Z
d

kk + Zi
kk) 



 

 

Figura VI.13 – Connessione “fittizia” delle reti di sequenza, 

per cortocircuito bifase netto 
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