5&\ "% DIIES Dipartimento di
: INGEGNERIA
Y, e?

dellINFORMAZIONE, delle INFRASTRUTTURE e del’ENERGIA SOSTENIBILE

Corso di Fondamenti di
Informatica

Dispensa 8: Composizione di Classi

Prof. Domenico Rosaci

Composizione di Classi

In Java, la dichiarazione di un oggetto appartenente ad una determinata classe, comporta semplicemente la
creazione di un riferimento all’'oggetto e non la costruzione in memoria dell’oggetto stesso.

Esempio:

Sia Materia una classe che rappresenti una materia universitaria, e che contenga due campi, il primo
rappresentante il nome della materia e il secondo rappresentante il settore scientifico disciplinare a cui la
materia afferisce.

class Materia {
private String denominazione;
private String ssd;
public Materia(String d, String s){
denominazione=d;
ssd=s;

public Materia(Materia m){
denominazione=m.getDenominazione();
ssd=m.getSsd());
}

public String getDenominazione(){
return denominazione;
}
public void setDenominazione(String s){
denominaziones=s;

public String getSsd(){
return ssd;

1

public Materia getStatus(){
Materia m=new Materia(denominazione,ssd);
return m;

!

public void stampa(){
System.out.printin(denominazione+"("+ssd+")");

Si consideri la seguente istruzione, che dichiara una variabile m della classe Materia.
Materia m;

la situazione che si crea con questa istruzione corrisponde alla creazione di una cella che contiene un
indirizzo di memoria (un riferimento) ad un oggetto di classe Materia. Tuttavia, poiché I'oggetto non é stato
ancora creato, il riferimento contenuto nella variabile non corrisponde a nessuna cella di memoria, e viene
indicato con l'identificatore null.

null

Se si vuole far “puntare” m ad un oggetto della classe Materia, bisogna creare |'oggetto usando 'operatore
new abbinato ad un costruttore della classe.

m=new Materia(“Fondamenti di Informatica”, “ING-INF/05");

In seguito a questa istruzione, la variabile m “punta” all’oggetto appena creato.

1024 Fondamenti di Informatica

Y

Nell’esempio di cui sopra, abbiamo supposto che 'oggetto a cui m punta sia stato creato all’indirizzo di
memoria 1024. L'insieme dei due valori “Fondamenti di Informatica” e “ING-INF/05” rappresenta lo stato
dell’'oggetto m.

Adesso immaginiamo di voler creare una copia di m, ed a tale scopo dichiariamo una seconda variabile di
tipo Materia, ad esempio:

Materia m1;
Per ottenere che m1 abbia lo stesse stato di m, potremmo scrivere:
ml=m;

Tuttavia, anche se cosi m1 assume lo stesso stato di m, esso non rappresenta una copia dell’oggetto a cuim
fa riferimento. Semplicemente, m1 e un secondo riferimento all’oggetto puntato da m.

1024 Fondamenti di Informatica

3

1024
ml

L'operazione che abbiamo effettuato e potenzialmente “pericolosa”. Infatti, se operiamo modifiche
sull’oggetto attraverso m1, dobbiamo essere coscienti che I'oggetto modificato € lo stesso a cui anche m fa
riferimento. Ad esempio, se modifichiamo la denominazione dell’oggetto puntato da m1 scrivendo:
m1.setDenominazione(“Chimica”);

possiamo riscontrare il cambiamento di denominazione anche attraverso m, scrivendo:

System.out.printin(m.getDenominazione());

avendo come effetto la visualizzazione sullo schermo della stringa “Chimica”.

Per questo motivo, al fine di evitare tale effetto collaterale degli assegnamenti di riferimenti, se vogliamo
creare una copia di un oggetto dobbiamo usare new ed il costruttore:

ml=new Materia(m.getDenominazione(),m.getSsd());

Ottenendo la seguente situazione:

1024 > Fondamenti di Informatica
m

1154 »| Fondamenti di Informatica
m1l

che produce un’effettiva copia dell’oggetto puntato da m, assegnando tale copia al riferimento m1.

Possiamo ottenere una copia dell’oggetto puntato da m anche attraverso il costruttore di copia della classe
Materia. Questo costruttore accetta in ingresso un oggetto della classe, e crea un nuovo oggetto avente lo
stesso stato dell’oggetto passato. Quindi I'istruzione:

m1l=new Materia(m);

produce lo stesso effetto dell’istruzione
ml=newMateria(m.getDenominazione(),m.getSsd());

Infine, un terzo modo di creare una copia dell’oggetto puntato da m & quello di usare un metodo
getStatus() della classe Materia, che appunto crea un oggetto di classe Materia avente lo stesso stato
dell’oggetto che chiama il metodo getStatus(), e restituisce un riferimento a questo nuovo oggetto.

ml=m.getStatus();

Ovviamente questo terzo metodo di creare una copia dell’oggetto, rispetto all’uso del costruttore di copia,
consente di assegnare la copia ad un nuovo riferimento in qualunque momento, e non solo in fase di
creazione del riferimento.

Le considerazioni di cui sopra sono particolarmente importanti quando si introduce la “Composizione di
classi”, ovvero quando si dichiara una classe in cui alcuni campi sono oggetti di altre classi. E’ questo il caso,
ad esempio, della classe Corso illustrata di seguito, composta da un campo materia di classe Materia, da un
campo intero anno, e da un campo doc di classe Docente.

class Docente {
private String nome;
private String cognome;
public Docente(String n, String c){
nome=n;
cognome=g;

}

public String getNome(){
return nome;

}

public String getCognome(){
return cognome;

}

public Docente getStatus(){
Docente d=new Docente(nome,cognome);
return d;

1

public void stampa(){
System.out.printin(nome+

+cognome);

class Corso {
private Materia materia;
private int anno;

private Docente dog;

public Corso(Materia m, int a, Docente d){
materia=m.getStatus();
anno=a;
doc =d.getStatus();

}

public Materia getMateria(){
return materia.getStatus();

1

public int getAnno(){
return anno;

!

public Docente getDocente(){
return doc.getStatus();

public Corso getStatus(){
Corso e=new Corso(materia,anno,doc);
return e;

}

public void stampa(){
materia.stampa();
System.out.printin("anno:"+anno);

doc.stampa();

Come si vede, il costruttore parametrizzato della classe Corso, per assegnare al campo materia lo stato
dell’oggetto a cui fa riferimento il parametro m, non effettua una semplice assegnazione di riferimento, del

tipo materia=m, ma invece assegna a materia una copia dell’oggetto m, ottenuta invocando m.getStatus.
Cio consente di creare un oggetto di classe Corso il cui campo materia ¢ reso indipendente dall’'oggetto m
di classe Materia usato per crearlo. Per presentare un esempio concreto in questo contesto, immaginiamo
di creare un oggetto di classe Materia e un oggetto di classe Docente nel modo seguente:

Materia m=new Materia(“Fondamenti di Informatica”, “ING-INF/05");
Docente d=new Docente(“Mario”,”Rossi”);

adesso serviamoci di m e di d per creare un oggetto della classe Corso:
Corso c=new Corso(m,2008,d);

se successivamente noi volessimo cambiare lo stato dell’oggetto m, ad esempio cambiando Ia
denominazione della materia in “Reti di Calcolatori”, tale modifica non si riflettera sullo stato dell’oggetto c,
che continuera a contenere un riferimento alla materia “Fondamenti di Informatica”. Questo
comportamento “corretto” & stato ottenuto procedendo come descritto sopra nel costruttore
parametrizzato della classe Corso. Se in questo costruttore avessimo scritto, invece di materia=m.getStatus,
semplicemente materia=m, la modifica sull’oggetto m avrebbe comportato I'effetto collaterale di una
modifica sullo stato dell’oggetto c.

Per identico motivo, anche i metodi getMateria() e getDocente() della classe Corso, non restituiscono dei
riferimenti ai corrispondenti campi dell’'oggetto, ma piuttosto riferimenti a copie di questi campi. Infatti,
supponiamo come esempio che il metodo getMateria() di Corso restituisse il campo materia dell’oggetto
(usando I'istruzione return materia invece di return materia.getStatus()). Allora l'istruzione:

Materia v=c.getMateria();

permetterebbe di creare un riferimento v all’'oggetto che rappresenta la materia del corso c. Attraverso
guesto riferimento si potrebbe modificare lo stato del corso ¢, ad esempio scrivendo:

v.setDenominazione(“Reti di Calcolatori”);

Fortunatamente, getMateria() restituisce solo una copia dell’oggetto che rappresenta la materia del corso
¢, impedendo tale inconveniente.

Di seguito sono riportate le descrizioni di altre due classi, Esame e Studente, che rappresentano due
ulteriori esempi di composizione tra classi.

class Esame {

private Corso corso;

private int voto;

public Esame(Corso c, int v){
corso=c.getStatus();
voto=v;

}

public Corso getCorso(){
return corso.getStatus();

}

public int getVoto(){
return voto;

1

public Esame getStatus(){
Esame e=new Esame(corso,voto);

return e;

!

public void stampa(){
corso.stampal();
System.out.printin("voto:"+voto);

public class Studente {
private String nome;
private String cognome;
private int matricola;
private Esame[] listaEsami;
public Studente(String n, String ¢, int m, Esame e[]){
nome=n;
cognome=g;
matricola=m;
listaEsami=new Esame[e.length];
for(int i=0;i<e.length;i++)
listaEsami[i]=e[i].getStatus();
!
public void stampa(){
System.out.printin(nome+" "+cognome+", matricola:"+matricola);
for(int i=0;i<listaEsami.length;i++)
listaEsami[i].stampa();

}
public static void main(String[] args){

Docente profRossi=new Docente("Mario","Rossi");

Docente profBianchi=new Docente("Gianni","Bianchi");
Materia Informatica=new Materia("Informatica","ING-INF/05");
Materia Analisi=new Materia("Analisi","MAT/05");

Corso Informatica08=new Corso(Informatica,2008,profRossi);
Corso Analisi08=new Corso(Analisi,2008,profBianchi);

Esame[] esamiPasquale=new Esame[2];

esamiPasquale[0]=new Esame(Informatica08,28);
esamiPasquale[1]=new Esame(Analisi08,25);

Studente pasquale=new Studente("Pasquale"”,"Verdi",126,esamiPasquale);
pasquale.stampal();

